On the Convective Motions in Different Layers of Atmosphere

Main Article Content

Anzor I. Gvelesiani

Abstract

From the unified point of view, this paper gives some known and new results of theoretical and experimental investigations of slow mesoscale convective motions in the neutral and conductive atmosphere. Specific thermo-hydrodynamic regime conditions of the considered mediums were taken into account for determination of onset of convection and the vertical velocity of arisen heat thermal. Carried out original analytical and numerical investigations showed that largescale eddy regions and zones of divergence and convergence responsible to existence of three-dimensional motions of air in the neutral atmosphere and in the ionosphere.

Keywords:
convective motions in atmosphere
Published: Feb 9, 2017

Article Details

How to Cite
Gvelesiani, A. I. (2017). On the Convective Motions in Different Layers of Atmosphere. Journals of Georgian Geophysical Society, 14(2). Retrieved from https://ggs.openjournals.ge/index.php/GGS/article/view/1787
Section
Articles

References

Rumford C. Of the propagation of heat in fluids. Complete Works, American Academy of Arts and Sciences, 1870, v. 1, p. 239.

Thomson J. T. On a changing tesselated structure in certain liquids. Proc. Glasgow Philos. Soc, 1881, v. 2.

Bénard M. Les tourbillons cellulariesdansune nappe liquide. Revue General de Sciences, 1900, v. 12, pp. 1261-1309.

Bénard M. Les tourbillons cellulariesdansune nappe liquidetransportant de la chaleurpar convection en regime permanent. Ann. de Chimie et de Physique. 1901, v. 23, p. 62.

Rayleigh O. M. On convection currents in a horizontal layer of fluid when the higher temperature is on the under side. Philos. Mag. and J. Sci., 1916, v. 32, N192, pp. 529-546.

Dubuk A. F. Convective motions in atmosphere. MeteorologiaiGidrologia, 1946, N 6.

Priestley C. H. B. Buoyant motion in a turbulent environment. Austral. J. Physics, 1953, v. 6, N 5.

Priestley C. H. B. Convection from earth’s surface. Proc. Roy. Soc., 1953, v. 238, N1214. .

Malkus J. S. Some results of a trade-cumulus cloud investigation. J. Meteorol., 1954, v. 11, N 3.

Stommel H., Arons A., Blanchard D. An oceanographical curiosity: the perpetual salt fountain. Deep-Sea Res., 1956, v. 3, N 2, pp. 152-153.

Chandrasekhar S. Hydrodynamic and hydromagnetic stability. Clarendon Press,Oxford, England, 1961, 652 p.

Gutman L. N. Introduction to the nonlinear theory of mesometeorological processes. L.: Gidrometeoizdat, 1969, 295 p.

Joseph D. D. Stability of fluid motions. Springer-Verlag, Berlin-Heidelberg-New York, 1976 ; M: Mir, 1981, 638 p.

Golitsyn G. S. Energy of convection. Non-linear waves: Stochasticity and Turbulence.Gorky: AN SSSR, IPF, 1980, pp. 131-139.

Houze R. A. Jr. Mesoscale convective systems. Reviews of Geophysics, 2004, v. 42, RG4001, pp. 1-29.

Jellinek A. M., Manga M. Links between long-lived hot spots, mantle plumes,D′ ′ ,and plate tectonics. Reviews of Geophysics, 2004, v. 42, RG3002, pp. 1-35.

Dynamical meteorology, (Eds. Izvekov B. I.andKochin N. E.). GidroLenredizdatTsEGMS, 1935, v. 1.

Sulakvelidze G. K., SulakvelidzeYa. G. Thermodynamics of troposphere. Part I. Tbilisi, TSU, 1980, 294 p.

Shishkin N. S. Calculations of vertical flows by layer method. Trudy GGO, v. 57, 1959.

Shishkin N. S. To the calculation of the velocity of the convective clouds vertical growth. Trudy GGO, v. 104, 1960.

Orjonikidze A. A. To the question of estimation of the atmosphere thermal instability. Proceedings of the All-Union Conference on the Active Influence upon the Hail Processes. Tbilisi, Institute of Geophysics, Georgian Academy of Sciences, 1964, pp. 262-270.

Bukhnikashvili A. V., Gaivoronsky I. I., Kartsivadze A. I., Kiziria B. I., Okujava A. M., Orjonikidze A. A., Sarkisova L. S., Seregin Yu. A. Active influence upon hail processes and results of experiments provided in the Alazani Valley. Proceedings of the All-Union Conference on the Active Influence upon the Hail Processes. Tbilisi, Institute of Geophysics, Georgian Academy of Sciences, 1964, pp. 281-324.

Kartsivadze A. I., Makharadze G. M., Orjonikidze A. A. Experimental study of vertical motions in convective clouds. Transactions of Institute of Geophysics of Georgian SSR Academy Sci., 1972, v. XXVIII, pp. 196-209.

Eidinova G. Z. To the problem of cumulus clouds tops growth velocity. Transactions of Institute of Geophysics of Georgian SSR Academy Sci., 1972, v. XXVIII, pp. 145154.

Balabuev A. G. Some results of convective clouds photogrammetric observations in the Alazany Valley. Transactions of Institute of Geophysics of Georgian SSR Academy Sci., 1967, v. XXV, N 1, pp. 25-34.

Belinsky V. A. Dynamical meteorology. M.–L.: OGIZ GITTL, 1948, 703 p.

Bryan G. H., Fritsch J. M. On the existence of the convective rolls in the convective region of squall lines. 10th Conference on Mesoscale Processes, Am. Meteorol. Soc., Portland, Oreg., 23-27 June, 2003.

Kachurin L. G. Physical principles of influencing at the atmospheric processes. L.: Gidrometeoizdat, 1990, 463 p.

Gvelesiani A. I. Some aspects of the hail particles evolution. Ph.D. Thesis, Leningrad: LGMI, 1970, 211 p.

Gutman L. N. Approximate nonlinear theory of a stationary cumulus cloud. Proceedings of the All-Union Conference on the Active Influence upon the Hail Processes. Tbilisi, Institute of Geophysics, Georgian Academy of Sciences, 1964, pp. 132-149.

Ogura Y. The evolution of a moist convective element in a shallow, conditionally unstable atmosphere: A numerical calculation. J. Atmos. Sci., 1963, v. 20, N5, pp. 407424.

Morton B. R. Weak thermal vortex rings. J. Fluid Mech., 1960, v. 9, pp. 107-118.

Lilly D. K. Numerical solutions for the shape-preserving two-dimensional thermal convection element. J. Atm. Sci., 1956, v. 21, N 1.

Weigel A. P., F. K. Chow, M. W. Rotach. On the nature of turbulent kinetic energy in a steep and narrow Alpine valley. Boundary-Layer Meteorol. DOI 10.1007/s10546-0069142-9. Springer Science-Business Media B.V. 2006.

Chen S. S., Hauze R. A. Jr., Mapes B. E. Multiscale variability of deep convection in relation to large-scale circulation in TOGA COARE. J. Atmos.Sci., 1996, v. 53, pp. 1380- 1409.

Gvelesiani A. I. On the hierarchy of mesoscale vortexes in the turbulent medium. J. Georgian Geophys. Soc., 2006, v. 11B, pp. 3-11.

Baumjohann W., Gustafsson G., Nilsen E., Ranta H., Evans D. S. Latitude-integrated Joule and particle heating rates during the Energy Budget Campaign 1980. J. Atmos. Terr. Phys., 1985, v. 1-3, pp. 27-39.

Offermann D. The Energy Budget Campaign 1980: introductory review. J. Atmos. Terr. Phys., 1985, v. 1-3, pp. 1-26.

Hargreaves J. K. The upper atmosphere and solar-terrestrial relations. An introduction to the aerospace environment. Van Nostrand Reinhold Company, New York-CincinnatiToronto-London-Melbourne. 1977 (1982, Russian), 352 p.

Dickinson R. E., Ridley E. C., Roble R. G. Meridional circulation in the thermosphere. I. J. Atmos. Sci., 1975, v. 32, N 9, pp. 1737-1754.

Dickinson R. E., Ridley E. C., Roble R. G. Meridional circulation in the thermosphere. II. J. Atmos. Sci., 1977, v. 34, N 1, pp. 176-192.

Khantadze A. G., Gvelesiani A. I. Influence of ionosphere plasma on the general circulation of high atmosphere. I. Geomagnetism iAeronomia, 1981, v. 21, N6, pp. 988-992; 1982, v. 22, N1, pp. 66-69.

Gvelesiani A. I. On the meridional winds in the ionosphere. Geomagnetism iAeronomia, 1985, v. 25, N1, pp. 58 – 62.

Gvelesiani A. On the energy budget of the mesosphere and lower thermosphere. J. Georgian Geophys. Soc., 2002, v. 7B, 46 - 51.

Gvelesiani A. I. To the problem of the upper atmosphere turbulence. J. Georgian Geophys. Soc., 2008, v.12B, pp. 52-75.