
 52

Journal of the Georgian Geophysical Society, 
Issue (A). , Physics of Atmosphere, Ocean, and Space Plasma, v. 15, 2011-2012,  pp. 52-64 
 
 
 

On the convective motions in different geophysical media 
 

Anzor I. Gvelesiani 
 

Iv. Javakhishvili Tbilisi State University, M. Nodia Institute of Geophysics 
1, Alexidze Str., 0193 Tbilisi, Georgia, e-mail:  

<anzor_gvelesiani@yahoo.com> 
 

                                                   Abstract 
 

From the unified point of view, this paper discusses some known and new results of 
theoretical and experimental investigations of slow mesoscale convective motions in the neutral and 
conductive gas and liquid mediums, and a mantle. Specific thermo-hydrodynamic regime conditions 
of the considered mediums were taken into account for determination of onset of convection and the 
vertical velocity of arisen heat thermal.  
 
1. Introduction.        

 
Turbulent heat- and mass-transfer processes are well known, and their research represents 

great interest for specialists, dealing with investigations of the geophysical and various practical 
problems. In that consequence, some known of other authors and some original results and 
discussions of the problems will be considered below [1-14]. This paper is sequential of the article 
[15]. 

.  
2. Double convective diffusion in an ocean. Thermal and haline convection.  
    

2.1. Theoretical analysis of Benard’s experiments was made by Rayleigh, which issued 
linearized thermo-hydrodynamic equations of incompressible viscous liquid in the Boussinesq 
approximation [5, 7] 
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where hTTA /)( 12 −= , θ+= )(0 zTT , AzTT += 10 .  
For solution of the Benard problem Rayleigh introduces the idea of free layer without tension forces 
at its boundaries: 

 

02

2

=
∂
∂

==
z
wwθ      at      z = 0 and h.                                       (2) 

 
Seeking the solution in the form normal modes Rayleigh found exact solution and obtained the 
critical values of the introduced parameter θννα /ThgRa 3Δ=  , 427 4 /Rac π= = 657.511 (of the 
onset of thermal instability), and wave parameters ( nk , ) of the most fast growing perturbation. 
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        znsinw)z(ŵ π0= .                                                                   (4) 
 

Breaking stability depends on the form and dimensions of convective motions, perturbations 
scale, conditions at the boundaries of convective layer etc. The Rayleigh criterion is a criterion of 
onset and evolution of the cellular convection. At the critical value of the Rayleigh number, 
periodical relative to the spatial values stationary convective motions are arisen. 

2.2. The temperature and salinity of sea water has non-uniform distribution. Most essential 
peculiarity of the sea water is influence of heat and salt on the density and characteristic property of 
heat and salt. Their opposite action upon the density of the sea water is reflected in expression 

TS Δ−Δ=Δ αβρρ 0/ . Diffusion of a heat and salt in the sea water is determined by the thermal 
diffusivity ( 123105.1 −−⋅≈ scmTν ) and the diffusion constant ( 125103.1 −−⋅≈ scmSν ), ST νν / ≈ 115. 
Brilliant mental experiment of Stommel-Arons-Blanchard (1956) [6], short report “An 
oceanographical curiosity: the perpetual salt fountain” become basic work initiated and stimulated 
study of convection in the presence of double diffusion process. The authors also suggested a 
scheme of operation.   

In the sea, where the double convective diffusion takes place, the Archimedes force of total 
buoyancy has following form [7]: 
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where 0ρρρ −=Δ , 0TTT −=Δ , 0SSS −=Δ , here 0ρ , 0T , 0S are means of the density, 

temperature and salinity at the layer lower boundary, ρΔ , TΔ , SΔ are increments of the density, 
temperature and salinity at the layer upper boundary;  α  andβ  are coefficients of volumetric 
expansion and its salt analogue, respectively; R is so called relation of buoyancy, which 
characterizes influence of two diffusive components upon the density change. 

It is said that the layer is stably stratified if ρΔ < 0; when ρΔ = 0, stratification of layer is 
neutral; when SΔ = S = 0 – thermal convection (heating from below), then TΔ < 0 and ρΔ > 0 
stratification of layer is unstable; when TΔ = 0 – isothermal salt convection (salinization from 
above), then SΔ  > 0 and ρΔ  > 0 – stratification of layer is unstable, too. 

In the non-trivial double-convection case when TΔ  ≠ 0, SΔ ≠ 0 it is evident that four cases of 
the temperature and salinity drops may be considered (salinization and heating of the water layer 
from above or from below):  

 
(1) The salinization and heating from above: 0>ΔS , 0>ΔT , )1(/ 0 −Δ−=Δ RSβρρ ; 
 
(1a) 1>R ,  0<Δρ , stable stratification,   (1b) 1<R ,  0>Δρ , unstable stratification.  
                                                                                                                                                  
(2) The salinization and heating from below: 0<ΔS , 0<ΔT , )1(/ 0 RS −Δ=Δ βρρ ; 
 
(2a) 1<R ,  0<Δρ , stable stratification,  (2b) 1>R ,  0>Δρ , unstable stratification; 
 
(3) The salinization from above and heating from below. 0>ΔS , 0<ΔT , 

)1(/ 0 +Δ=Δ RSβρρ     
      –  stratification always is unstable; 
 
(4) The salinization from below and heating from above. 0<ΔS 0>ΔT ,  =Δ 0/ ρρ  
      = 0)1R(S <+Δβ  – stratification always is stable. 
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Expressions for convective vertical velocity and effective Reynolds number have following 
form [7] 
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93.6Pr ≈ , τ  115≈ ; for CT 0
0 20= , %400 =s , 72.0=β , )(101.2 04 C−⋅=α .         (7) 

 
In the laboratory experiments modeling a double-convection in the systems heat-salt and 

sugar-salt (similar systems NaCl-KCl) no diffusing components loss takes place.  
According to measurements in the upper layer of the ocean the vertical velocity of 

convectional motion changes from 0.04 1−⋅ scm  at the surface (h = 0 m.) of the ocean to 0.91 
1−⋅ scm  at the depth h = 600 m. 
 

w = 0.04÷0.91 1−⋅ scm ,    h = 0 ÷600 m.                                      (8) 
 

2.2.2. In the presence of vertical velocity shear of the main fluid flow dzdU /  in the layer of 
the water with heterogeneous density with a thickness equals to *h respective Rayleigh 
number *Ra is, [8],  
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Here h is the initial thickness of the free convection layer. Positive values of the Rayleigh 

number 0* >Ra characterizes instability of the layer *h . 
 

3.1. Two-phase flows [16]. Equation of a turbulent energy balance in the shearing motion 
containing solid particles of sparse distribution takes up the form [15] 
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it is convenient to rewrite the aforecited equation in a following shape 
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where the non-dimensional Kolmogorov parameter, Ko,   
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u′ , w′ , ρ′ , and s′are pulsations of horizontal and vertical components of velocity, density of 
mixture, and mean volume concentration, s , of the particles, respectively; ρρρσ /)( −= p , pρ is 
the density of particles, and zuuz ∂∂= / . The Kolmogorov number shows a turbulent energy 
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consumption of the flow to the weighing of particles. When the Kolmogorov number Ko ~1, the 
particles influence on the dynamics of the flow is great, i.e., the Kolmogorov parameter Ko  
becomes an additional parameter determining influence of the stratification. Thus, the 
Kolmogorov parameter, Ko, is similar to Richardson’s one in the theory of temperature 
stratification.  
   

3.2. The energetic layer of an ocean. 
                                       (a)                                       (b) 

 
                           Fig. 1. Temperature distribution in the upper layer of the ocean:  
                           (a) schematic profile of temperature: (1) is the upper uniform layer, 
                           (2) is the upper thermocline [16]; (b) precise measuring profile [17]. 
 

Upper energetic layer of an ocean is uniform (in it the temperature and salinity. and, therefore, 
the density are constant) is connected with the turbulent mixing (see Fig.1). The mixing is realized 
by the wind shear and convection: descending heavy particles to swim with the current from the 
upper layer, cooled and salted, as a result of evaporation from the surface and also of breaking of 
the surface waves. The depth of this layer depends on the season: it increases in winter and 
decreases in spring. The upper uniform layer is supported by the region with sharply changed 
temperature (Fig. 1a) – upper thermocline to the depth about 200-250 m. Here a seasonal 
temperature changing does not become apparent.  An analysis of temperature distributions  in the 
strong and stable stratified upper thermocline shows that in the upper thermocline the turbulent 
diffusivity coefficient is of order  æt ~ scm /)110( 21 ÷− , intermediate value between the upper 
turbulent uniform layer’s value equal to tæ ~ scm /10 23 , and the value of the molecular thermal 
diffusivity, æ ~ scm /10 23− . More precise measurements [17] obtain, that instantaneous 
temperature stratification has stepped character: the range of constant temperature changed by 
region with great gradients (Fig. 1b). That results from turbulence in the turbulent flow with steady 
stratification is spread in the form of pots and connected with internal waves [18]. 

3.3. Laboratory experiments [19].  Free convective motions inside of the heterogeneity 
liquids are one of main processes giving rise to generation of fine structure of ocean, atmosphere, 
and, seemingly, only mechanism of stratification of Antarctida’ Lake Vanda type closed basins. 
Laboratory experiments (provided under lateral heating) showed that general property of the spatial 
structure (SS) of convective motions inside stratified liquid (SL) is generation periodic vertical 
circular layers. These layers separated by thin plates of still liquid having great gradients of 
temperature and salinity, shear of velocity. The convective processes inside of SL are convenient 
model for study of periodical SS dynamics inside of heterogeneity media. In this case, the 
temperature is “fast” variable and salinity is “slow” variable, spatial dispersion caused by difference 
of their kinetic coefficients – the thermal diffusivity scm /1043.1 23−⋅=χ and diffusion of a salt 

scmks /1041.1 25−⋅= [19]. 
4. Golitsyn’s approximate theory of the roll convection [11]. 
4.1. The Ū-Ra-Nu relation.An interest to this problem was arisen under attempts to estimate 

the motion velocities in the Earth upper mantle, which cause displacements of the lithospheric 
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plates of the Earth’s crust. From the formula for the energy dissipation (under equal derivatives of 
the velocity components) and the character scale equal to the thickness of the layer d (roll 
convection) the mean values of the velocity components are [11]:  
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or  

           ( ) 2/1)1( −≈≈ NuRa
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i.e. for sufficiently developed convection, when the Raynolds number 1500Re ≥ , the Rayleigh 
number 710~Ra and between them is following relation: 
 
                                      ,5.0Re 9/43/2

1 RaPa −=                                                    (15) 
 
where 1a is experimental constant, κ is the coefficient of thermal diffusivity.  

The author using the McKenzie et al. (1974) [11] recommendations for values of the 
material parameters: 15102 −−⋅= Kα , )/(102.1 3 KkgJcp ⋅⋅= , 3/.6.3 mt=ρ , sm /102 217⋅=ν , 

obtains for the geothermal flux of heat value f = 22 /106 mWt−⋅ , for thickness of the upper mantle 
value kmmd 700107 5 =⋅= , and for mean velocity (14) following value 

 
                                                 yearcmu /1≈ .                                                   (16) 
 
According to Elsasser et al. (1979) ( [11]) all mantle with thickness kmd 3000≈  takes part in 
convection process. Then  
    
                               yearcmu /5≈ ,                                                                   (17) 
 
what is near to real situation  
 
                               yearcmu /01≈ .                                                                (18) 
 

Another available conclusion for study fluid motions in the mental is that under small 
Raynolds’ numbers the self-similarity of convection follows from these conceptions [12, 13]. There 
is possibility of laboratory modeling of such motions under small Reynolds number [11]. In detail, 
results of the laboratory investigations of this problem are discussed in the large paper [14]. 

4.2. The Nu-Ra relation. 
Thermal conductivity equation in a fluid without internal sources,  
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is a homogeneous equation relative to the choice of the temperature scale. Introduce the scales of 
the length, d , velocity, U, and time, Ud / . Then before the Laplacian in r.h.s. is appeared a factor, 

1−Pe (where Pe is the Peklet number),  
 

                    κ/UdPe = .                                                                          (20) 
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It is evident that when 1>>Pe  the thermal boundary layer of the thickness  
 

       2/1−≈ Pedδ ,  ( 2/1Ped
≈

δ
),             (

δ
dNu ~ ),                              (21) 

 
is generated, but in the main part of liquid its temperature must little change. 
A lot of laboratory and numerical experiments [20] confirm this picture and show that at the 

developed convection the temperature changes about 2/TΔ  near the boundaries and in main 
volume the liquid is isothermal, practically. 

From the heat flux continuity through the liquid it is evident that δκρ 2// Tcf p Δ≈ . Using 
(21) and HGTcfd p +Δ= κρ , gcH p α/= , the author obtained  the relation [11]:  

                
                   2/2/1PeNu ≈ .                                                                   (22) 
 
       
Choose the scale of velocity in form of (14), then instead of (22) we have 
 
                        2/14/1 2/)]1([ aNuRaNu −≈ .                                        (23)  
 
At small supercritical values of the Rayleigh number cRaRaNuRa −− ~)1( , i.e. 
 
                         4/1)(~ cRaRaNu − .                                                     (24) 
 
For Nu>>1, from (23) we have that 
 
                     3/13/23/42~ RaaNu −− .                                                       (25) 
 
These heat-transfer principles are well-known experimentally and the last one also has 

theoretical substantiations [20, 21]. These formulas (22)-(25) are free from several assumptions of 
other authors. Coefficient 3/23/42 −− a = 0.1 at a = 9 and 0.08 at a = 12.  

According to [22], in case of plane surface for Ra 910> at united laminar and turbulent 
convection Nu = 3/113.0 Ra , for Ra 410 ÷ 910 at a natural laminar convection the dependence is lower 
Nu = 4/159.0 Ra , but according to [14] Nu 3/11.0 γRa≈ . Last investigations reviewed in [14] confirm 
Nu - Ra relation obtained by [11].  

 
4.3. The K-Qτ relation..  
For non-dimensional kinetic energy of convection, K , it is obtained the formula 
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in dimensional form  
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where fG γ= is the velocity of the kinetic energy generation from potential one (mechanical 

power), dzdT /=γ , f is the heat flux through the liquid without internal sources of 
heat, ντ /2drel = is the viscous relaxation time.  
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For density convection in (14)  instead of fG γ=  one can substitute mgdG gγ= , where gγ is 
the velocity of the kinetic energy generation, m is the flux of density through the layer, mgd is the 
mechanical power introducing into the flux under a stationary density convection. 

 In the inertial interval (homogeneous isotropic interval) for kinetic energy of the volume 
with a mass 3dM ρ=  relative to similar neighbour volumes the kinetic energy of convection 

 
3/13/2 )()( −=≈ ddQdMK m εε ,                                 (28) 

 
where 3dQm ρε= is the incoming total power of energy from the external scale of turbulence and 
dissipating into the viscous interval. Because of Ud ≈3/1)(ε , the mean square different of velocities 
in two points of the area divided by the distance equals to d , than  Udd τε =− 3/1)(  is suggested as 
the character time life of the vortex of the scale d . 
 

             UmQK τ≈ .                                                      (29) 
 

The kinetic energy of circulation on the slowly revolving planet may be written in similar 
form  

 
                                        eQK τ≈ ,                                                       (30) 
 
where qaQ 24π= is a total energy surge to the planet of radius a , q is a mean solar energy 

surge to the area element of a planet surface, ee ca /=τ is a character time of propagation of 
disturbance in global scale, ec  is the isothermal speed of sound at the equilibrium temperature 

4/1)/( σqTe = , and σ  is the Stephan-Boltzmann constant. 
Last formulas show that the total kinetic energy of large quantity of forced flows is 

determined by the product of the energy input into the liquid and the character time of relaxation. It 
is of importance that in all considered cases above mentioned time is the least among all times 
which may construct from parameters of the problem (having at one’s disposal). Taking into 
account the hypothesis of self-similarity, that time is generally single one. Golitsyn introduces the 
rule of the fastest reaction which he names as “principle of the fastest reaction”: the kinetic energy 
of constant forced flow is of the order of power input multiplied by the minimal relaxation time 
character for the system. This rule allows without recourse to the similarity theory to write the 
expression for total kinetic energy of the system. 
 
 

5. The mantle plumes. 
 

5.1. A simple model for planetary mantle convection is the Bénard convection in a fluid with a 
temperature-dependent viscosity. In the Bénard problem, dissipative processes play an essential 
role. Bénard was particularly interested in the role of viscosity. He found that when the temperature 
of the lower surface was gradually increased, at a certain instant, the layer became reticulated and 
revealed its dissection into cells [9]. This problem is one of the actual problems of the Geophysics 
and Physics of the Earth.  
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Fig. 3. A schematic illustration of the horizontally averaged variation of temperature (solid line) 
with depth during an experiment. Also shown are the active thermal boundary layers (thin dashed 
lines) at the top and bottom of the fluid layer. The high viscosity of the coldest region makes the 
upper part of the cold thermal boundary layer stagnant. Resultant weak cooling keeps the actively 
convecting region nearly isothermal and, in turn, the viscosity ratio across the hot thermal boundary 
layer small [14]. 

5.2. According to [23] the main unknown parameters are viscosity values within mantle layers 
whose number and thickness are prescribed in the models developed during the past two decades. 
These parameters are estimated by comparing observations and predictions of relative sea level 
change at various sites over the past 18,000 years. Secular changes of length of day and the Earth’s 
gravitational oblateness also contain information on the depth-varying mantle viscosity. The upper 
mantle viscosity is fixed here at sPa105 20⋅ . Comparison of theoretical oblateness- viscosity curve 
and observational one with each other leads to a lower mantle viscosity around sPa102 21⋅ . (The 
author suggests the range sPa1051 21⋅− that fits the geological observations). This evident is 
conformed to the diagram in Fig. 3 [14]. 

.                   
                                         
                                           Fig. 3.                                                       Fig. 4. 
 
Fig. 3 (left). A laboratory experiment with compositional convection in which low-viscosity water 
is injected through a permeable plate into high-viscosity glucose syrop. In a way that is dynamically 
similar to thermal convection, water collects in a gravitationally unstable compositional boundary 
layer at the base of the syrup and then drains intermittently as plumes with large heads and narrow 
underlying conduits. Despite the presence of robust low-viscosity conduits, complicated interactions 
among rising plumes prevent their becoming long-lived stable features [14]. 
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Fig. 4 (right). Schematic illustration of several models for D ′′ . Within the context of plate tectonics, 
D ′′ has been explained variously as (a) a phase change, (b) a thermal boundary layer, (c) a 
compositional boundary layer, (d) ponded chemical dregs from subducted lithosphere, and (e) a slab 
graveyard [14].   
 

         
 
                                          (a)                                                                    (b) 
 
Fig. 5. (a) Schematic cross section of the deformed dense layer defining variables and the geometry 
of the problem – dense layer topography and long-lived plumes. This scheme was constructed on 
the basis of laboratory experiments which showed as the dense layer is deformed by flow into a 
nascent plume instability showing the different regions of the flow. (b) Schematic cross section of 
the deformed dense layer defining variables and the geometry of the problem – height of 
topography. In order for topography to be stable uU d ′~ [14]. 

 
 
5.3. According to [26] lubrication theory analysis the perturbed velocity of fluids [14] 
 
                                         )()( zuUzu ′+= ,                                            (31) 

 
where U is the velocity at the boundary between the interior and thermal boundary layer fluid, 

)(zu′ describes the variations in velocity within the boundary layer. The x-component of the 
momentum equation is  
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where p is dynamic pressure, we have 
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Continuity of viscous stresses at the interface between the cold interior fluid and the thermal 
boundary layer demands that δμμ /~/ uLUc ′ and thus that 
 

                                               
c

ghU
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The criterion for stable plumes is that the velocity U must be greater than the speed, at which a 
thermal can rise through the mantle, 
 

                                              
c
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μ
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where ρΔ is the difference between the density of thermal boundary layer fluid and interior fluid, g 
is gravity cμ is the viscosity at the cold boundary, δ is the thermal boundary layer’s thickness, h  is 
the dense layer’s height. This condition leads to the requirement that consth >δ/  (in the 
experiments 6.0/ ≈δh ). 

Long-lived plumes are located on top of topographic peaks on the dense layer. In order for a 
plume conduit to become fixed on top of such a feature it is clear that thermal boundary layer fluid 
must flow along the interface with the dense layer faster than it can rise vertically into the interior as 
a new thermal. Said differently, the timescale for thermal boundary layer fluid to flow laterally from 
the center of an embayment to a peak must be less than the timescale for a new convective 
instability to grow. 

The scheme Fig. 5a was constructed on the basis of laboratory experiments which showed as 
the dense layer is deformed by flow into a nascent plume instability showing the different regions of 
the flow. Knowing the height of the topography on the dense layer is critical for determining the 
stability of plumes. One dynamical requirement for stable topography is that the lateral flow of 
boundary layer fluid must be balanced by the opposing flow of dense layer material (Fig. 5b). The 
condition implies that uU d ′~ , where μδρ LghU d /~ 2Δ  and thus that 
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6. Some remarks.  
 

For comparison with the above mentioned  picture of air bubbles generation (Fig. 3), below it is 
given the similar picture of air babbles, generated in super-cooled water drop after its freezing. 
Water drops of about 2-3 mm in diameter were frozen on the ice in the original micro-cold-store 
engineered in Geophysical Institute of Georgian Acad. Sci. [28]. 
 

 

 
 

Fig. 6. Internal bubble structure of frozen supercooled  
              water drop of about 2-3 mm in size [28]. 

 
were used. After freezing maximal air babbles’ diameter was about 0.3 mm. The speed of spreading 
of the crystallization front ≈G 1310483 −− ⋅⋅ scm. ; temperature drop of air in the cold  store 

010−=ΔT , thermal conductivity of air 510635 −⋅= .aλ
1−⋅⋅ )Kseccm(cal , solubility of air in water 

in mole fractions is D ~ 5108131 −⋅÷ .. ; diffusion of a heat in the water 1231051 −−⋅≈ scm.Tν . The 
sizes of the air bubbles and thickness of initial ice layers in the freezing drop correlate with D /G . 
The thickness of first clear layer of ice is about 0.1-0.2 mm, and diameters of air bubbles ~ 0.12-
0.16 mm. 
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6.1. It necessary to note, that criterion TB ΔΔ= ραρ / in [14] may be obtained as ratio of 

criteria Archimedes, ρρν /)/( 23 Δ= glAr , and Grashof criteria, TglGr Δ= αν )/( 23 : 
   

  GrAr : = TB ΔΔ= ραρ / .                        (37) 
  

When the Reynolds number ν/Re Ul=  equals to the Archimedes 
number ρρν /)/( 23 Δ= glAr , then for an ascending motion velocity of the warm mass of liquid we 
have the following formula:  

 

ρν
ρ 2glU Δ

= ;                                                 (38) 

 
Using the relation huLU // ′≈ or hLuU /′≈ , i.e. we have that ρνρ // 2glhLu Δ≈′ or 

Lghlu ρνρ /2Δ≈′ . Having suggest l  = δ , one can obtain the expression (35) for the velocity 
variation in the boundary layer according to the modeling experiments [14]:  
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6.2. Let compare Golitsyn’s formula (22)  with Jellinek-Manga’s one (36): 
 

2/1~ PedNu
δ

≈    and      2/1~ −Bh
δ

, 

 
we obtain dependence between the Peklet number,  and the form-factor B     

 
1~ −BPe  

 
here hd = κ/UdPe = , and ic TB ΔΔ= ραρ /  is the stabilizing buoyancy effect of the dense layer.  
 
6.3. The theory of thermal instability in fluid spheres and in spherical shells has bearings on a 
number of geophysical questions [9]. Though applications of the theory are not universally 
subscribed, it cannot be doubted that convective motions in the fluid core are relevant to all 
theoriesconcerned with the origin of the earth’s magnetic field and its secular variations. 
But the theory of thermal instability has not been worked out with sufficient generality for these 
purposes. Even the effect of rotation has been examined only in a very preliminary way; and the 
onset of instability as overstability – which should be expected to be the rule rather than the 
exception with liquid metals requires investigation. And in addition to rotation, the effect of a 
magnetic field has also to be considered. The case of a uniform magnetic field presents no formal 
difficulty; but this is hardly appropriate for the problems in view. Without further knowledge, the 
choice of an initial field is so wide that the selection becomes almost arbitrary. It is, indeed, likely 
that the theory of the convective motions in the earth’s core cannot be dissociated from the theory 
of the origin of the earth’s magnetic field. 
 
7. Conclusion.  

           In the above considered cases of convective motions we practically deal with the 
Bénard problem: (a) for a single fluid when the instability has a simple mechanical interpretation 
and (b) for a mixture in which the motion gets complicated by the diffusion processes. In the linear 
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stability theory, it is generally assumed that the most general perturbation can be represented as a 
complete set of normal modes. This approach of the problem, as is well known, was carefully 
developed by Chandrasekhar [9], and analyzed later, for example, in the monographs [10, 27]), 
especially by Joseph [10].  

Being first step in analysis of the convective motions the linear theory cannot answer a 
number of essential questions. First of all, that is a question about stabilization of the rapidly 
increasing perturbations, secondly, a question about the structure of convective cells and their 
stability. Only by means of non-linear theory it is possible to answer these questions.  
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О конвективных движениях в различных геофизических средах 

 
Анзор И. Гвелесиани 

 
С единой точки зрения рассматриваются результаты теоретических и 

экспериментальных  исследований медленных мезамасштабных конвективных движений в 
атмосфере, океане и мантии. Учтена специфика режимов рассматриваемых сред при 
определении условий возникновения конвекции и нахождении аналитических формул для 
вертикальной скорости восходящего термика.  
 
 
konveqciuri moZraobebis Sesaxeb sxvadasxva geofizikur 

garemoSi 
 

anzor i. gvelesiani 
 

reziume 
 

ganxilulia  okeanesa da mantiaSi neli konveqciuri mezomasStaburi 
moZraobebis Teoriuli da eqsperimentuli Seswavlis Sedegebi. konveqciis 
warmoSobis pirobebisa da aRmavali Termikis vertikaluri siCqaris 
analizuri formulebis gansazRvrisas gaTvaliswinebulia ganxilul 
garemoTa reJimebis specifika.  
 
 
 
 
 
 

 


