Generation, intensification and self-organization of internal-gravity wave structures in the Earth’s ionosphere with directional wind shear

Main Article Content

Aburjania G.D, Chargazia K.Z

Abstract

The linear mechanism of generation, intensification and further nonlinear dynamics of internal gravity waves (IGW) in stably stratified dissipative ionosphere with non-uniform zonal wind (shear flow) is studied. In case of the shear flows the operators of linear problem are non-selfadjoint, and the corresponding Eigen functions - nonorthogonal. Thus, canonical - modal approach is of less use studying such motions. Non-modal mathematical analysis becomes more adequate for such problems. On the basis of non-modal approach, the equations of dynamics and the energy transfer of IGW disturbances in the ionosphere with a shear flow is obtained. Necessary conditions of  instability of the considered shear flows  are obtained. The increment of shear instability of IGW is defined. Exact analytical solutions of the linear as well as the nonlinear dynamic equations of the problem are built. It is revealed that the transient amplification of IGW disturbances due time does not flow exponentially, but in algebraic - power law manner. The frequency and wave-number of the generated IGW modes are functions of time. Thus in the ionosphere with the shear flow, a wide range of wave disturbances are produced by the linear effects, when the nonlinear and turbulent ones are absent. The effectiveness of the linear amplification mechanism of IGW at interaction with non-uniform zonal wind is analyzed. It is shown that at initial linear stage of evolution IGW effectively temporarily draws energy from the shear flow significantly increasing (by order of magnitude) own amplitude and energy. With amplitude growth the nonlinear mechanism of self-localization turns on and the process ends with self-organization of nonlinear solitary, strongly localized IGW vortex structures. Therefore, a new degree of freedom of the system and accordingly, the path of evolution of disturbances appear in a medium with shear flow. Depending on the type of shear flow velocity profile the nonlinear IGW structures can be the pure monopole vortices, the transverse vortex chain or the longitudinal vortex street in the background of non-uniform zonal wind. Accumulation of these vortices in the ionosphere medium can create the strongly turbulent state.

Published: Apr 25, 2013

Article Details

How to Cite
Chargazia K.Z, A. G. (2013). Generation, intensification and self-organization of internal-gravity wave structures in the Earth’s ionosphere with directional wind shear. Journals of Georgian Geophysical Society, 15, 65–94. Retrieved from https://ggs.openjournals.ge/index.php/GGS/article/view/51
Section
Articles

References

Aburjania, G.D., Chargazia, Kh.Z., Kharshiladze, O.A. Shear flow driven magnetized planetary wave structures in the ionosphere. Journal of Atmospheric and Solar Terrestrial Physics. V. 72. P. 971-981.doi: 10.1016/j.jastp. 2010.05.008. 2010.

Aburjania, G.D., Chargazia, Kh.Z., Zeleny, L. M., Zimbardo, G. Model of strong stationary vortexturbulence in the space plasma. Nonlinear Process. Geophys. 16, 11-22. 2009.

Aburjania, G.D., 2006. Self-organization of the vortex structures and the vortex turbulence in the dispersed media. Komkniga, URSS, Moscow . 2009 (in Russian).

Aburjania, G.D., Chargazia, Kh.Z., Khantadze, A.G., Kharshiladze, O.A. Mechanism of the planetary Rossby wave energy amplification and transformation in the ionosphere with an inhomogeneous zonal smooth shear wind. J.Geophys.Res.111. A09304. Doi:10.1029/ 2005JA011567. 2006.

Aburjania, G.D., Chargazia, Kh.Z., Jandieri, G.V., Kharshiladze, O.A.Generation and propagation of the ULF planetary-scale electromagnetic wavy structures in the ionosphere. Planet. Space. Sci. 53, 881-901. 2005.

Aburjania, G.D., Khantadze, A.G. Large-scale electromagnetic wave structures in E-region of the ionosphere. Geomang. Aeron. 42 (2), 245-51. 2002.

Aburjania, G.D., Machabeli, G.Z. Generation of electromagnetic perturbations by acoustic waves in the ionosphere. J. Geophys. Res. A. 103, 9441-9447.1998.

Aburjania, G.D., 1996. Self-organization of acoustic gravity vortices in the ionosphere before the earthquake. Plasma Phys. Rep. 22 (10), 954-959.

Alexander, M.J. Chapter 5. Gravity waves in the stratosphere, in: “The Stratosphere: Dynamics, Chemistry and Transport”. L.M. Polvani, A. Sobel, D.W. Waugh (Eds.). Geophys. Monogr. Ser. Doi: 10. 1029/ 2009GM000887. 2010.

Alexander, M.J., Geller, M., McLandress, C. et al., 2010. Recent developments in gravity wave effects, in climate models and global distribution of gravity wave momentum flux from observations and models. Q. J. R. Meteorol. Soc. 136, 1103-1124.

Alexander, M.J., Gille, J. Cavanaugh, C. et al. Global estimates of gravity wave momentum flux from High Resolution Dynamics Limb Sounder observations. J Geophys. Res.113,D15S18. Doi:10.1029/2007JD008807. 2008.

Alexander, M.J., Rosenlof, K.H. Gravity wave forcing in the stratosphere: Observational constraints from the Upper Atmosphere Research Satellite and implications for parametrization in global models. J Geophys. Res.108, D19,4597. Doi:10.1029/2003JD003373. 2003.

Bengston, L., lighthill, J. (Eds.). Intense Atmospheric Vortices. Springer-Verlag, Beerlin-Heidelberg. 1982.

Bertin, F., Testud, J., Kerby, L., Rees, P.The meteorological jet stream as a sourse of medium scale gravity waves in the thermosphere: an experimental study. J. Atmos. Terr. Phys. 40 (10/11), 1161-1183. 1978.

Burmaka, V.P., Kostrov, L.S., Chernogor, L.F.Statistical characteristics of Doppler HF radar signals at sounding of mid-latitude ionosphere medium, perturbed by satellite launches and solar terminators. Radiophysics, Radioastr., 8 (2), 143-162. 2003.

Chagelishvili, G.D., Rogava, A.D., Tsiklauri, D.G. Effect of coupling and linear transformation of waves in shear flow. Phys. Rev. E. 53 (6), 6028-6031. 1996.

Cheng, K., Huang, Y.-N. Ionospheric disturbances observed during the period oh Mount Pinatubo eruptions in June 1991. J. Geophys. Res. 97, 16,995-17,004. 1991.

Chimonas, G., Hines, C.O. Atmospheric gravity waves induced by a solar eclipse. J. Gephys. Res. 76, (28),. 703-705. 1971.

Chimonas, G., Hines, C.O. Atmospheric gravity waves launched by auroral currents. Planet. Space Sci. 18 (4), 565-612. 1970.

Cmyrev, V.M., Marchenko, V.A., Pokhotelov, O.A. et al.Vortex structures in the ionosphere and magnetosphere of the Earth. Planet. Space Sci. 39, 1025-1030. 1991.

Cowling, T.C. Magnetohydrodynamics. Monograph on Astronomical Subject, Hilger, Bristol, U.K.1976.

Dokuchaev, V.P. On the impact of the Earth’s geomagnetic field on the winds in the ionosphere. Izv. AS SSSR, Phys. of Atmos. and Ocean., 5, P.783-787. 1959.

Drobjev, V.I., Molotov, G.F., Rudina, M.P., et al. Ionosphere response on the perturbation due to artificial explosions. Ionospheric Investigations, 39, 61-71. 1986.

Francis, S.H. Global propagation of atmospheric gravity waves: a review. Journal of Atmospheric and Terrestrial Physics. 37,1011-1054. 1975.

Friedrich, M., Torkar, K.M., Singer, W., et al. Signatures of mesospheric particles in ionospheric data. Ann. Geophys. 27, 823-829. 2009.

Fritts, D.C., Janches, D., Riggin, D.M. et al. Gravity waves and momentum fluxes in the mesosphere and lower thermosphere using 430 MHz dual-beam measurements at Aresibo: 2. Frequency spectra, momentum fluxes, and variability. J Geophys. Res. 111, D18108. Doi:10.1029/2005JD006883. 2006.

Gavrilov, N.M., Fukao, S. Hydrodynamic tropospheric wave sources and their role in gravity wave climatology of upper atmosphere from the MU radar observations. J. Atmos. Solar-Terr. Physics. 63, 931-943. 2001.

Gershman, B.N. Dynamics of ionosphere plasma. Nauka, Moscow . 1974 (in Russian).

Gill, A. Atmosphere- Ocean Dynamics. Academic Press, London. 1982.

Ginzburg, V.L., Rukhadze, A.A. Waves in Magnetoactive Plasma. Nauka, Moscow. 1975 (in Russian).

Golitsin, G. S., Romanova, N.N., Chunchuzov, E.P. On generation of internal waves in the atmosphere by sea choppiness. Izv. AS SSSR, Phys. of Atmos. and Ocean, 12, 319-323. 1975.

Golitsin, G. S. Damping of small scale oscillations in the atmosphere due to viscosity and thermal conductivity. Izv. AS SSSR, Phys. 0f Atmos. and Ocean, 1 (2), 136-149. 1965.

Gossard, E., Hooke, W. Waves in the Atmosphere. Elsevier, Amsterdam. 1975.

Graik, A.D.D., Criminale, W.O. Evolution of wavelike disturbances in shear flow: a class of exact solutions of the Navier-Stokes equations. Proc. Roy. Soc. London. Ser. A. 406, 13- 21. 1986.

Hayakawa, M. (Edit). Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes. Terra Sci., Tokyo. 1999.

Hecht, J.H., Alexander M.J., Walterscheid R.L. et al. Imaging of atmospheric gravity waves in the stratosphere and upper mesosphere using satellite and ground-based observations over Australia during the TWPICE campaign. J. Geophys. Res. A . 114 (17), D 18123, Doi: 10. 1029/2008 JD011259. 2009.

Hines, C.O., Reddy, C.A. On the propagation of atmospheric gravity waves trough region of wind shear. J. Geophys. Res. 72 (3), 1015-1034. 1967.

Hines, C.O. Internal atmospheric gravity waves at ionospheric heights. Canad. J. Phys.38 (11), 1441-1481. 1960.

Kamide, Y., Chian, A. (Eds.). Handbook of the Solar-Terrestrial Environment. Springer-Verlag, Berlin, Heidelberg. 2007.

Kazimirovskii, E.S., Kokourov, V.D. Motions in the Ionosphere. Nauka, Novosibirsk (in Russia).

Kim, J., Mahrt, L., 1992. Momentum transport by gravity waves. J. Atmos. Sci. 49, 735-748. 1979.

Kuester, M.A., Alexander, M.J., Ray, E.A., 2008. A model study of gravity waves over Huricane Humbert (2001). J. Atmos. Sci. 65, 3231-3246.

Larichev, V.D., Reznik, G.M. On the two-dimensional solitary Rossby waves. Soviet Physics Doklady, 21, 581-585. 2008.

Liperovskii, V.A., Pokhotelov, V.A., Shalimov, S.A. Ionospheric Precoursors of the Earthquakes. Nauka, Moscow. 1992.

Magnus, K. Schwingungen. B.G. Teubner Verlagsgesellschaft mbH, Stuttgart. 1976.

Mallier, R., Maslowe, S.A. A row of counter-rotating vortices// Phys. Fluids. A5, 1074-1075. 1993.

¬Margetreud, R., 1969. Winds in mesosphere and low termosphere. In Book.: The Wind in the Ionosphere. Gidrometisdat, Leningrad. 1969 (in Russian).

Mayr, H.G., Harris, I., Herraro, F.A. et al. Thermospheric gravity waves: observations and interpretation using the transfer function model (TFM). Space Sci. Rev. 54, 297-375. 1990.

Mikhailovskii, A.B. Theory of plasma Plasma Instabilities. V.2. Consultants Bureau, New York. 1974.

Ming, F.C., Chen, Z., Roux, F. Analysis of gravity-waves produced by intense tropical cyclones. Ann. Geophys. 28, 531-547. 2010.

Monin, A.S. (Ed.). Physics of Ocean. V.2. Hydrodynamics of Ocean. Nauka, Moscow. 1978 (in Russian).

Monin, A.S., Iaglom, A.N. Stastical Hydrodynamics. V.2. Nauka, Moscow. 1967 (in Russian).

Nakamura, T., Tsuda, T., Yamamoto, et. Al. Characteristic of gravity waves iv the mesosphere observed with the middle and upper atmosphere radar. 1. Momentum flux. J. Geophys. Res. 98 (В5), 8899-8910. 1993.

Nezlin, M.V., Chernikov, G.P. Analogies of the drift vortices in plasma and geophysical hydrodynamics. Plasma Phys. Rep., 21 (11), 975-999. 1999.

Nezlin, M.V. Rossby solitary vortices, on giant planets and in the laboratory. CHAOS. 4,187-202.

Pedlosky, J., 1979. Geophysical Fluid Dynamics.Springer-Verlag, New York. 1994.

Petviashvili, V.I., Pokhotelov, O.A. Solitary Waves in Plasmas and Atmosphere.Gordon and Breach, London. 1992.

Pokhotelov, O.A., Parrot, M., Fedorov, E.N. et al. Response of the ionosphere to natural and man-made acoustic sources. Ann. Geophys. 13, 1197-1210. 1995.

Ramamurthy, M.K., Collins, B.P., Rauber, R.M. et al. Evidence of very-large-amplitude solitary waves in the atmosphere. Nature. 348, 314-317. Doi: 10.1038/348314A0. 1990.

Rastogi, P.K.. Radar studies of gravity waves and tides in the atmosphere, a review. J. Atmos. Terr. Phys. 43 (5/6), 511- 524. 1981.

Reddy, S.C., Schmid, P.J., Hennigson, D.S. Pseudospectra of the Orr-Sommerfeld operator. SIAM. J. Appl. Math. 53,15-23. 1993.

Rishbeth, H., Fukao, S., 1995. A review of MU radar observation of the thermosphere and ionosphere. J. Geomag. Geoelectr. 47, 621-637.

Schunk, R.W., Sojka, J.J. Ionosphere thermosphere space weather issues. J. Atmos. Terr. Physics. 58. (14), 1527-1574. 1996.

Shaefer, L.D., Rock, O.R., Levis, T.P. Detection of explosive events by monitoring acoustically-induced geomagnetic perturbations. Lawrence Livermore Laboratory. CA USA, 94550. 1999.

Stenflo, L., Stepaniants, Yu.A. Acoustic-gravity modons in the atmosphere. Ann. Geophys. 13, 973-975. 1995.

Stepaniants, Yu., Fabrikant, A.L. Features of Cherenkov emission of the drift waves in hydrodynamics and plasma. Soviet Physics Journal of Experimetal and Theoretical Physics, 102 (5), 1512-1523. 1992.

Sundkvist, D., Vaivads, A., Andre, M. et al. Multi-spacecraft determination of wave characteristics near the proton gyrofrequency in high-altitude cusp. Ann. Geophys. 23, 983-995. 2005.

Testud, J. Gravity wave generated during magnetic substorms. J. Atmos. Terr. Phys. 32, 1793-1805. 1970.

Timofeev, A.V. Resonance Phenomena in Plasma Oscillations.Physmatlit, Moscow. 2000 (in Russian).

Tolstoy, I., Herron, T.J. Atmospheric gravity waves from nuclear explosions. J. Atmos. Sci. 27, 55-61. 1970.

Trefenthen, L.N., Trefenthen, A.E., Reddy, S.C., Driscoll, T.A. Hydrodynamic stability without eigenvalues. Science. 261, 578-584. 1993.

Waterscheid, R.L., Schubert, G. Nonlinear evolution of an upward propagating gravity wave: Overturning, Convection, Transience and Turbulence. J. Atmos. Sci. 47 (1), 101-125. 1990.

Whitham, G.B. Linear and Nonlinear Waves. John Wiley, New York. 1977.

Williams, G.P., Yamagata, T. Geostrophic regimes, intermediate solitary vortices and Jovian Eddies. J. Atmos. Sci. 41, 453-468. 1984.

Zeldovich, I.B., Mishkis, A.D. Elements of Applied Mathematics. Nauka, Moscow. 1972 (in Russian).